Document Type : Original Research Manuscripts


Knowledge and Information Science Dept., Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran


The use of IoT in intelligent agriculture is now very common among farmers, and with the use of drones and sensors, advanced agriculture is rapidly becoming a growing global standard. The use of IoT requires infrastructure that is defined within an IoT governance framework. This paper proposes new approaches to knowledge management, Artificial Intelligence, and IoT governance and their impact on productivity in the agriculture sector by hiring specialized people who are called AI-aided Agriculture Knowledge Managers.
Given the importance of all three topics, knowledge management, IoT, and agriculture, we have tried to show the impact of the presence of AI-aided Agriculture Knowledge Managers and IoT in reducing water consumption as one of the most important requirements of agriculture in a simulation by Matlab Software. The data was obtained from the Eurostat database. We also provide a framework for the presence of AI-aided Agriculture Knowledge Managers in fields that are specialized in agricultural science and knowledge management. Finally, due to the importance of governance in this sector, a framework for the governance of artificial intelligence in the field of agriculture with the presence of knowledge managers has been proposed.


Main Subjects

Advance Training Program on Agriculture Knowledge Management. NATIONAL INSTITUTE OF AGRICULTURAL EXTENSION MANAGEMENT. An organisation of Ministry of Agriculture, Government of India. Retrived 2020-2-25,access: al/AKM-E.pdf.
Ahmad, T., Ahmad, S., & Jamshed, M. (2015, October). A knowledge based Indian agriculture: With cloud ERP arrangement. In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT) (pp. 333-340). IEEE.
Aitkenhead, M. J., Dalgetty, I. A., Mullins, C. E., McDonald, A. J. S., & Strachan, N. J. C. (2003). Weed and crop discrimination using image analysis and artificial intelligence methods. Computers and electronics in Agriculture, 39(3), 157-171.
Aitkenhead, M., Donnelly, D., Coull, M., & Black, H. (2013). E-smart: environmental sensing for monitoring and advising in real-time. In Environmental Software Systems. Fostering Information Sharing: 10th IFIP WG 5.11 International Symposium, ISESS 2013, Neusiedl am See, Austria, October 9-11, 2013. Proceedings 10 (pp. 129-142). Springer Berlin Heidelberg.
Alemu, D., Jennex, M. E., & Assfea, T. (2020). An Agricultural Knowledge Management System for Ethiopia. In Knowledge Management, Innovation, and Entrepreneurship in a Changing World (pp. 334-359). IGI Global.
Almeida, V. A., Doneda, D., & Monteiro, M. (2015). Governance challenges for the Internet of Things. IEEE Internet Computing, 19(4), 56-59.
Antony, A. P., Leith, K., Jolley, C., Lu, J., & Sweeney, D. J. (2020). A review of practice and implementation of the internet of things (IoT) for smallholder agriculture. Sustainability, 12(9), 3750.
Anvekar, R. G., Banakar, R. M., & Bhat, R. R. (2017, April). Design alternatives for end user communication in IoT based system model. In 2017 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR) (pp. 121-125). IEEE.
Burney, S. A., & Naseem, J. (2018). Knowledge Engineering in Agriculture. International Journal of Computer Science and Information Security (IJCSIS), 16(2), 53-71.
Arif, C., Mizoguchi, M., Setiawan, B.I., Doi, R., (2012). Estimation of soil moisture in paddy field using Artificial Neural Networks. International Journal of Advanced Research in Artificial Intelligence. 1 (1), 17-21.
Asplund, M., & Nadjm-Tehrani, S. (2016). Attitudes and perceptions of IoT security in critical societal services. IEEE Access, 4, 2130-2138.
Ayaz, M. & Uddin, A. & Sharif, Z. & Mansour, A. & Aggoune, H. (2019). Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. IEEE Access. PP. 1-1.10.1109/ACCESS.2019.2932609.
Bac, C. W., Hemming, J., & Van Henten, E. J. (2013). Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Computers and electronics in agriculture, 96, 148-162.
Bak, T., & Jakobsen, H. (2004). Agricultural robotic platform with four wheel steering for weed detection. Biosyst. Eng, 87(2): 125-136.
Bargoti, S., & Underwood, J. P. (2017). Image segmentation for fruit detection and yield estimation in apple orchards. Journal of Field Robotics, 34(6), 1039-1060.
Batchelor, W. D., McClendon, R. W., Adams, D. B., & Jones, J. W. (1989). Evaluation of SMARTSOY: An expert simulation system for insect pest management. Agricultural Systems, 31(1), 67-81.
Bawden, O., Ball, D., Kulk, J., Perez, T., & Russell, R. (2014). A lightweight, modular robotic vehicle for the sustainable intensification of agriculture. In Proceedings of the 16th Australasian Conference on Robotics and Automation 2014 (pp. 1-9). Australian Robotics and Automation Association (ARAA).
Bergerman, M., Billingsley, J., Reid, J., & van Henten, E. (2016). Robotics in agriculture and forestry. Springer handbook of robotics, 1463-1492.
Billingsley, J., Visala, A., & Dunn, M. (2008). Robotics in agriculture and forestry. 1065-1077.
Bo, Y. & Wang, H. (2011). The application of cloud computing and theInternet of Things in agriculture and forestry. inProc. Int. Joint Conf.Service Sci., May 2011, pp. 168-172.
Bogue, R. (2016). Robots poised to revolutionise agriculture. Industrial Robot: An International Journal, 43(5), 450-456.
Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J., Lewis, S. E., & Envo Consortium. (2013). The environment ontology: contextualising biological and biomedical entities. Journal of biomedical semantics, 4, 1-9.
Cariou, C., Lenain, R., Thuilot, B., & Berducat, M. (2009). Automatic guidance of a four‐wheel‐steering mobile robot for accurate field operations. Journal of Field Robotics, 26(6‐7), 504-518.
Chanda, M. M., Banerjee, N., & Bandyopadhyay, G. (2020). Using Artificial Neural Networks (ANNs) to Improve Agricultural Knowledge Management System (KMS). International Journal of Knowledge Management (IJKM), 16(2), 84-101. doi:10.4018/IJKM.2020040106
Chandrara, A. (2017). Knowledge Management in Agriculture and its methods: A study Research & Reference Assistant. IJNGLT, MAY 2017 VOLUME 3 ISSUE 2.
Chen, M.; Wu, H.; Chiu, W. 2018. "An Intelligent Agriculture Application Based on Deep Learning," 2018 International Conference on System Science and Engineering (ICSSE), New Taipei, 2018, pp. 1-5.
Chen, W. L., Lin, Y. B., Ng, F. L., Liu, C. Y., & Lin, Y. W. (2019). RiceTalk: Rice blast detection using Internet of Things and artificial intelligence technologies. IEEE Internet of Things Journal, 7(2), 1001-1010.
Chisita, C. & Fombad, M. (2020). Knowledge Management for Climate Change Adaptation to Enhance Urban Agriculture Among Selected Organisations in Zimbabwe. Journal of Information & Knowledge Management. 2050009.
Confalonieri, R., Foi, M., Casa, R., Aquaro, S., Tona, E., Peterle, M., ... & Acutis, M. (2013). Development of an app for estimating leaf area index using a smartphone. Trueness and precision determination and comparison with other indirect methods. Computers and electronics in agriculture, 96, 67-74.
Cooper, L., Walls, R. L., Elser, J., Gandolfo, M. A., Stevenson, D. W., Smith, B., ... & Jaiswal, P. (2013). The plant ontology as a tool for comparative plant anatomy and genomic analyses. Plant and Cell Physiology, 54(2).
Crop Trait Ontology; Available from:
Dasgupta, Avirup & Gill, Asif & Hussain, Farookh. (2019). A Conceptual Framework for Data Governance in IoT-enabled Digital IS Ecosystems.209-216.
De Vries, M., & de Boer, I. J. (2010). Comparing environmental impacts for livestock products: A review of life cycle assessments. Livestock science, 128(1-3), 1-11.
Dhakshana, A., Rajandran, J.D. (2019). Farmers integrated management challenge a of plantains product at cauvery delta, Thanjavur District. International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878,Volume-8 Issue-2S4, July 2019.
Diago M P., Tardaguila J. (2015). A new robot for vineyard monitoring. 2015; 30(3): 38.
Dolci, R.: IoT solutions for precision farming and food manufacturing: artificial intelligence applications in digital food. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), pp. 384-385.IEEE(2017).
Dlodlo, N., & Kalezhi, J. (2015, May). The internet of things in agriculture for sustainable rural development. In 2015 international conference on emerging trends in networks and computer communications (ETNCC) (pp. 13-18). IEEE.
Fonseca, S.M., Massruhá, S., Angelica De Andrade Leite, M.: Agro 4.0-Rumo À Agricultura Digital, pp. 28-35 (2016)
Elijah, O.; Orikumhi, I. (2018). An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 5,p 3758-3767.
English, A., Ross, P., Ball, D., & Corke, P. (2014, May). Vision based guidance for robot navigation in agriculture. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1693-1698). IEEE.
Environment Ontology; Available from:
European Environment Agency
Feng, Q., Wang, X., Zheng, W., Qiu, Q., & Jiang, K. (2012). New strawberry harvesting robot for elevated-trough culture. International Journal of Agricultural and Biological Engineering, 5(2), 1-8.
Feng, Q., Zou, W., Fan, P., Zhang, C., & Wang, X. (2018). Design and test of robotic harvesting system for cherry tomato. International Journal of Agricultural and Biological Engineering, 11(1), 96-100.
Furness, A. (2019) IAgrE Landwards Conference 2019 Can Big Data lead to Smarter Farming? Wednesday 30th October 2019, Peterborough Suite, East of England Events Centre, Peterborough Internet of Things (IoT) for Agriculture. Ontology; Available from:
Gantait, A., & Patra, B. J. (2018). Defining your IoT governance practices: How to manage enterprise-wide IoT initiatives. Retrieved 2020-08-10.
Garcia, D. C. F., Gattaz, C. C., & Cruvinel, P. E. (2019, January). Information Retrieval: A Case Study on Contributions of Greimasian Semiotics to Semantic Computing in Agriculture for Knowledge Management. In 2019 IEEE 13th International Conference on Semantic Computing (ICSC) (pp. 478-484). IEEE.
García, L., Parra, L., Jimenez, J. M., Lloret, J., & Lorenz, P. (2020). IoT-based smart irrigation systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors, 20(4), 1042.
Garnier, E., Stahl, U., Laporte, M. A., Kattge, J., Mougenot, I., Kühn, I., ... & Klotz, S. (2017). Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology, 105(2), 298-309.
Gerber, A., Romeo, J. (2017). Key concepts and skills for getting started in IoT. Updated January 30, 2020. Accessible.
Gliever, C., Slaughter, D.C. (2001). Crop verses weed recognition with artificial neural networks. ASAE paper, 01-3104, 1-12.
Gómez R., López Ruiz, L., Melgosa, N. Palma (2013). Capitán-Vallvey, and M. Sánchez-Marañón, "Using the mobile phone as munsell soil-colour sensor: an experiment under controlled illumination conditions," Computers and Electronics in Agriculture, vol. 99, pp. 200-208, 2013.
Green, O., Schmidt, T., Pietrzkowski, R. P., Jensen, K., Larsen, M., & Jørgensen, R. N. (2014). Commercial autonomous agricultural platform. Kongskilde Robotti: Soroe, Denmark.
Gupta, J. (2019). The Role of Artificial intelligence in Agriculture Sector. Retrived 2020-08-30 accessible at.
Haixia, Q., Banazi, T. M., Zhigang, Z., Low, T., & Brookshaw, I. J. (2016). Preliminary laboratory test on navigation accuracy of an autonomous robot for measuring air quality in livestock buildings. International Journal of Agricultural and Biological Engineering, 9(2), 29-39.
Han, K. S., Kim, S. C., Lee, Y. B., Kim, S. C., Im, D. H., Choi, H. K., & Hwang, H. (2012). Strawberry harvesting robot for bench-type cultivation. Journal of Biosystems Engineering, 37(1), 65-74.
Hayashi, S., Shigematsu, K., Yamamoto, S., Kobayashi, K., Kohno, Y., Kamata, J., & Kurita, M. (2010). Evaluation of a strawberry-harvesting robot in a field test. Biosystems engineering, 105(2), 160-171.
Hemming, J., Bac, W., Tuijl, B., Barth, R., Bontsema, J., Pekkeriet, E., Henten, E. 2014a. A robot for harvesting sweet-pepper in greenhouses. Proc. Int. Conf. Agric. Eng. 2014; 6-10.
Hemming, J., Bontsema, J., Bac, W., Edan, Y., Tuijl, B., Barth, R., Pekkeriet, E. 2014b. Final Report: Sweet-Pepper Harvesting Robot". Report to the European Commission in the 7th Framework Programme.
Hu, J., Yan, X., Ma, J., Qi, C., Francis, K., Mao, H. 2014. Dimensional synthesis and kinematics simulation of a high-speed plug seedling transplanting robot. Comput. Electron. Agric., 2014; 107: 64-72.
Huang, Y. J., Lee, F. F. 2010. An automatic machine vision-guided grasping system for Phalaenopsis tissue culture plantlets. Comput. Electron. Agric., 2010; 70(1): 42-51.
IBM. (2018) Cognitive Computing for Effective Knowledge Management IBM Corporation, December 2018 IBM United Intergovernmental Panel on Climate Change. 2020-08-13
Ishak, W., Ismail ,W. 2010. Research and Development of Oil Palm Harvester Robot at Universiti Putra Malaysia. Int J Eng Technol, 2010; 7(2): 87-94.
Jacobs, N., Edwards, P., Cottrill, C. D., & Salt, K. (2020). Governance and Accountability in Internet of Things (IoT) Networks. In The Oxford Handbook of Digital Technology and Society (Oxford Handbook). Oxford University Press.
Janssen, M., Luthra, S., Mangla, S., Rana, N. P., & Dwivedi, Y. K. (2019). Challenges for adopting and implementing IoT in smart cities: An integrated MICMAC-ISM approach. Internet Research, 29(6), 1589-1616.
Jayaselan, H. A. J., & Ismail, W. I. W. (2010). Kinematics analysis for five DOF Fresh Fruit Bunch harvester. International Journal of Agricultural and Biological Engineering, 3(3), 1-7.
Jha, K., Doshi, A, Patel, P., Shah, M. (2019). A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture 2 (2019) 1-12.
Jia W, Zheng Y, Zhao D, Yin X, Liu X, Du R. Preprocessing method of night vision image application in apple harvesting robot. Int J Agric & Biol Eng, 2018; 11(2): 158-163.
Jinhui, X., Yong, Y., Zhifeng, Y., & Shuyan, W. (2010, November). An online system for agricultural ontology service. In 2010 Third International Conference on Intelligent Networks and Intelligent Systems (pp. 479-481). IEEE.
Jørgensen R N, Sørensen C G, Maagaard J, Havn I, Jensen K, Søgaard H T, et al. Hortibot (2007): A system design of a robotic tool carrier for high-tech plant nursing. CIGR Ejournal, Vol. IX, No.1, Manuscript ATOE 07 006, 2007.
Kaewmard, N., Saiyod, S.: Sensor data collection and irrigation control on vegetable cropusing smart phone and wireless sensor networks for smart farm. In: 2014 IEEE Conferenceon Wireless Sensors (ICWiSE), pp. 106-112. IEEE (2014)
Khan, A., Jhanjhi, N. Z., Humayun, M., & Ahmad, M. (2020). The Role of IoT in Digital Governance. In Ponnusamy, V., Rafique, K., & Zaman, N. (Ed.), Employing Recent Technologies for Improved Digital Governance (pp. 128-150). IGI Global.
Kim, Y.; Roh J.H.; Young Kim, H. 2018. Early Forecasting of Rice Blast Disease Using Long Short-Term Memory Recurrent Neural Networks. Sustainability 2018, 10, 34; doi:10.3390/su10010034.
Knowledge Discovery in Databases (2020). Computer Science 831: Overview of the KDD Process.
Krishna, K.L., Silver, O., Malende, W.F., Anuradha, K.: Internet of Things application for implementation of smart agriculture system. In: 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 54-59.IEEE(2017)  36
Kumar, S., Sangeetha, V., Singh, P., Burman, R. R., & Bhowmik, A. (2018). Stakeholders' Perception about Rice Knowledge Management Portal's information. Indian Journal of Extension Education, 54(3), 79-84.
Lee, Y. J., Kwon, T. B., & Song, J. B. (2007). SLAM of a mobile robot using thinning-based topological information. International Journal of Control, Automation, and Systems, 5(5), 577-583.
Le Masson, P.; Weil B. and Hatchuel, A. (2010) "Strategic Management of Design and Innovation", Cambridge University Press, Cambridge
Lehnert, C., English, A., McCool, C., Tow, A. W., & Perez, T. (2017). Autonomous sweet pepper harvesting for protected cropping systems. IEEE Robotics and Automation Letters, 2(2), 872-879.
Li, Y., Lin, Y. and Geertman, S. (2015). The development of smart cities in China, CUPUM 2015.
Nan, L., Chunlong, Z., Ziwen, C., Zenghong, M., Zhe, S., Ting, Y., ... & Junxiong, Z. (2015). Crop positioning for robotic intra-row weeding based on machine vision. International Journal of Agricultural and Biological Engineering, 8(6), 20-29.
Lu, Q., Cai, J. R., Liu, B., Lie, D., Zhang, Y. J. 2016. Identification of fruit and branch in natural scenes for citrus harvesting robot using machine vision and support vector machine. Int. J. Agric. Biol. Eng. 2014; 7(2): 115-121.
Ma, Y.; Shi, J.; Chen, J.; Hsu, C.; Chuang, C. 2019 "Integration Agricultural Knowledge and Internet of Things for Multi-Agent Deficit Irrigation Control," 2019 21st International Conference on Advanced Communication Technology (ICACT), Pyeong Chang Kwangwoon _ Do, Korea (South),2019,pp.299-304.
MacKean R, Jones J L, Francis Jr J T. Weeding robot and method. Google Patents, 24-Aug-2017.
Maeda, Y., Goyodani, T., Nishiuchi, S., & Kita, E. (2018). Yield prediction of paddy rice with machine learning. In Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA) (pp. 361-365). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp).
Maier, H. R., & Dandy, G. C. (2000). Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental modelling & software, 15(1), 101-124.
Mehta, S. S., Burks, T. F. 2014.Vision-based control of robotic manipulator for citrus harvesting. Comput. Electron. Agric., 2014; 102: 146-158.
Mehta, S. S., MacKunis, W., Burks, T. F. 2016. Robust visual servo control in the presence of fruit motion for robotic citrus harvesting. Comput. Electron. Agric., 2016;123:362-375.
Meola, A. 2020. Smart Farming in 2020: How IoT sensors are creating a more efficient precision agriculture industry. Accessible at :
Mohanraj, I., Ashokumar, K., Naren, J.: Field monitoring and automation using IOT inagriculture domain. Procedia Comput. Sci.93,931-939(2016)
Moore, S. (2015) "Gartner Highlights Top 10 Strategic Technology Trends for Government, SYDNEY". Gartner Inc, Australia.
Mtega, W. P., & Ngoepe, M. (2020). Knowledge management best practices among rice farmers in selected areas of Tanzania. Journal of Librarianship and Information Science,52(2),331-344.
Muangprathub, J. ; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. (2019). IoT and agriculture data analysis for smart farm. Computers and Electronics in Agriculture. 156. 467-474.
Nema, M.K., Khare, D., Chandniha, S.K., 2017. Application of artificial intelligence to estimate the reference evapotranspiration in sub-humid Doon valley. Appl Water Sci 7, 3903-3910.
Nuske, S., Wilshusen, K., Achar, S., Yoder, L., Narasimhan, S., Singh, S. 2014a. Automated visual yield estimation in vineyards. J. F. Robot, 2014; 31(5) 837-860.
Nuske, S., Gupta, K., Narasimhan, S., Singh, S. 2014b. Modeling and calibrating visual yield estimates in vineyards. In Field and Service Robotics. Springer, Berlin, Heidelberg, 2014b; pp.343-356.
Odra, J., Deng, B.I. and Nhiem, G.P. 2004. "Framework for Rehabilitation and Development of Post-War South Sudan", Khartoum (Sudan): University of Bahr el Ghazal.
Ofori, M. & El-Gayar , O. (2019)"The State and Future of Smart Agriculture: Insights from mining social media," 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 2019, pp. 5152-5161.
Pai, A.; Shah, S.; Bohara, R. 2020. Smart Agriculture. EasyChair Preprint
Pandithurai, O., Aishwarya, S., Aparna, B., Kavitha, K.: Agro-tech: a digital model formonitoring soil and crops using internet of things (IOT). In: 2017 Third InternationalConference on Science Technology Engineering & Management (ICONSTEM), pp. 342-346. IEEE (2017)
Phenotype And Trait Ontology; Available from: < Plant Experimental Conditions Ontology; Availablefrom: < Ontology; Available from:
Prakash, C., Rathor, A. S., & Thakur, G. S. M. (2013). Fuzzy based Agriculture expert system for Soyabean. In International Conference on Computing Sciences WILKES100-ICCS2013, Jalandhar, Punjab, India (Vol. 113).
Prasad, S., Peddoju, S. K., & Ghosh, D. (2014, April). Energy efficient mobile vision system for plant leaf disease identification. In 2014 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 3314-3319). IEEE.
Rafeal, A. (1991). Knowledge application: Agriculture. Egypt: Central laboratory for agricultural knowledge based systems.
Rafea, A., El-Azhari, S., & Hassan, E. (1995). Integrating Multimedia with Expert Systems for Crop Production Management. Proceedings of the Second International IFAC Workshop on Artificial Intelligence in Agriculture, Wageningen, Netherlands.
Ravindra S., (2018). IoT Applications in Agriculture. Originally published January 2, 2018. Updated January 29, 2020. Written by, Content Contributor at:
Rhem, A. J. (2017). The connection between artificial intelligence and knowledge management. KM Institute Blog, available at: www. kminstitute. org/blog/connection-between-artificial-intelligence-and-knowledge-management.
Robinson, C., & Mort, N. (1997). A neural network system for the protection of citrus crops from frost damage. Computers and electronics in agriculture, 16(3), 177-187.
Ruckelshausen, A., Biber, P., Dorna, M., Gremmes, H., Klose, R., Linz, A., ... & Weiss, U. (2009). BoniRob–an autonomous field robot platform for individual plant phenotyping. Precision agriculture, 9(841), 1.
Ruckelshausen, A., Klose, R., Linz, A., Marquering, J., Thiel, M., Tölke, S. (2006).  Autonome Roboter zur Unkrautbekämpfung. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, pp.173-180.
Ryu, K. H., Kim, G., & Han, J. S. (2001). AE—Automation and emerging technologies: development of a robotic transplanter for bedding plants. Journal of agricultural engineering research, 78(2), 141-146.
Sahana, S., Singh, D., Pal, S., & Sarddar, D. (2020). A Design of IoT-Based Agricultural System for Optimal Management. IoT and Analytics for Agriculture, 211-227. _10
Sammons, P. J., Furukawa, T., & Bulgin, A. (2005, December). Autonomous pesticide spraying robot for use in a greenhouse. In Australian Conference on Robotics and Automation (Vol. 1, No. 9, pp. 1-9). Canberra, Australia: Commonwealth Scientific and Industrial Research Organisation.
Sander, S. BoniRob: An Autonomous Mobile Platform for Agricultural Applications, 2015. Available at:
Sanguankaew, P., & Vathanophas Ractham, V. (2019). Bibliometric review of research on knowledge management and sustainability, 1994–2018. Sustainability, 11(16), 4388.
Schriber, S. (2020). Smart Agriculture Sensors: Helping Small Farmers and Positively Impacting Global Issues, for Mouser Electronics. Retrieved 2020-08-03.
Senthilnath, J., Dokania, A., Kandukuri, M., Ramesh, K. N., Anand, G., & Omkar, S. N. (2016). Detection of tomatoes using spectral-spatial methods in remotely sensed RGB images captured by UAV. Biosystems engineering, 146, 16-32..
Shahpasand, S., & Rahimzadeh, O. (2018). Investigating the Role of Internet of Things in Knowledge Management Systems (Case Study: Offering a Resource Description Model Based on Ontological Study of Smart Store Management (Smart shopping cart)). IJCSNS International Journal of Computer Science and Network Security, vol.18 No.4, p.144.
Shahzadi, R., Tausif, M., Ferzund, J., Suryani, M.A., 2016. Internet of things based expert system for smart agriculture. Int. J. Adv. Comput. Sci. Appl. 7 (9), 341-350.
Shamshiri, R., & Ismail, W. I. W. (2012). Nonlinear tracking control of a two link oil palm harvesting manipulator. International Journal of Agricultural and Biological Engineering, 5(2), 9-19.
Shamshiri, R., & Wan Ishak, W. I. (2013). Design and simulation of control systems for a field survey mobile robot platform. Research Journal of Applied Sciences, Engineering and Technology, 6(13), 2307-2315.
Shamshiri, R. R., Hameed, I. A., Karkee, M., & Weltzien, C. (2018). Robotic harvesting of fruiting vegetables: A simulation approach in V-REP, ROS and MATLAB. Proceedings in Automation in Agriculture-Securing Food Supplies for Future Generations, 126, 81-105.
Shamshiri, R., Weltzien, C., Hameed, I. A., J Yule, I., E Grift, T., Balasundram, S. K., ... & Chowdhary, G. (2018). Research and development in agricultural robotics: A perspective of digital farming, 11 (4), 1-14.
Shrestha, R., Arnaud, E., Mauleon, R., Senger, M., Davenport, G. F., Hancock, D., ... & McLaren, G. (2010). Multifunctional crop trait ontology for breeders' data: field book, annotation, data discovery and semantic enrichment of the literature. AoB plants, 2010.
Shete, R., & Agrawal, S. (2016, April). IoT based urban climate monitoring using Raspberry Pi. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 2008-2012). IEEE.
Skobelev, P. (2012). Ontologies activities for situational management of enterprise real-time. Ontol. Designing, 1(3), 26-48.
Skobelev, P. O., Simonova, E. V., Smirnov, S. V., Budaev, D. S., Voshchuk, G. Y., & Morokov, A. L. (2019). Development of a knowledge base in the “smart farming” system for agricultural enterprise management. Procedia Computer Science, 150, 154-161.
Smart farming. Transforming agriculture with artificial intelligence. 2020
Song, H., & He, Y. (2005, July). Crop nutrition diagnosis expert system based on artificial neural networks. In Third International Conference on Information Technology and Applications (ICITA'05) (Vol. 1, pp. 357-362). IEEE.
Stein, M., Bargoti, S., & Underwood, J. (2016). Image based mango fruit detection, localisation and yield estimation using multiple view geometry. Sensors, 16(11), 1915.
Stone, N. D., & Toman, T. W. (1989). A dynamically linked expert-database system for decision support in Texas cotton production. Computers and electronics in agriculture, 4(2), 139-148.
Strisciuglio, N., Tylecek, R., Blaich, M., Petkov, N., Biber, P., Hemming, J., ... & Fisher, R. B. (2018, June). Trimbot2020: an outdoor robot for automatic gardening. In ISR 2018; 50th International Symposium on Robotics (pp. 1-6). VDE.
Sumriddetchkajorn, S. (2013). Mobile device-based optical instruments for agriculture. Sensing Technologies for Biomaterial, Food, and Agriculture 2013, 8881, 74-79.
Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73.
Tang, X., Zhang, T., Liu, L., Xiao, D., & Chen, Y. (2009). A new robot system for harvesting cucumber. In 2009 Reno, Nevada, June 21-June 24, 2009 (p. 1). American Society of Agricultural and Biological Engineers.
Tanigaki, K., Fujiura, T., Akase, A., & Imagawa, J. (2008). Cherry-harvesting robot. Computers and electronics in agriculture, 63(1), 65-72.
Nguyen, T. T., Vandevoorde, K., Wouters, N., Kayacan, E., De Baerdemaeker, J. G., & Saeys, W. (2016). Detection of red and bicoloured apples on tree with an RGB-D camera. Biosystems Engineering, 146, 33-44.
Thesaurus Of Plant characteristics; Available from: <>
Togneri, R., Kamienski, C., Dantas, R., Prati, R., Toscano, A., Soininen, J. P., & Cinotti, T. S. (2019). Advancing IoT-based smart irrigation. IEEE Internet of Things Magazine, 2(4), 20-25.
Uchihira, N. & Yoshida, M. (2018). Agricultural Knowledge Management Using Smart Voice Messaging Systems: Combination of Physical and Human Sensors. Short paper of ICSSI2018 & ICServ2018.
Uddin, M. A., Mansour, A., Le Jeune, D., & Aggoune, E. H. M. (2017, November). Agriculture internet of things: AG-IoT. In 2017 27th International Telecommunication Networks and Applications Conference (ITNAC) (pp. 1-6). IEEE.
Underwood, J. P., Hung, C., Whelan, B., & Sukkarieh, S. (2016). Mapping almond orchard canopy volume, flowers, fruit and yield using lidar and vision sensors. Computers and Electronics in Agriculture, 130, 83-96.
Underwood, J. P., Jagbrant, G., Nieto, J. I., & Sukkarieh, S. (2015). Lidar‐based tree recognition and platform localization in orchards. Journal of Field Robotics, 32(8), 1056-1074.
Underwood, J. P., Calleija, M., Taylor, Z., Hung, C., Nieto, J., Fitch, R., & Sukkarieh, S. (2015, May). Real-time target detection and steerable spray for vegetable crops. In Proceedings of the International Conference on Robotics and Automation: Robotics in Agriculture Workshop, Seattle, WA, USA (pp. 26-30).
Van Henten, E. J., Van Tuijl, B. A. J., Hoogakker, G. J., Van Der Weerd, M. J., Hemming, J., Kornet, J. G., & Bontsema, J. (2006). An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 94(3), 317-323.
Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., & Bontsema, J. (2003). Collision-free motion planning for a cucumber picking robot. Biosystems Engineering, 86(2), 135-144.
Van Henten, E. J., Schenk, E. J., Van Willigenburg, L. G., Meuleman, J., & Barreiro, P. (2010). Collision-free inverse kinematics of the redundant seven-link manipulator used in a cucumber picking robot. Biosystems engineering, 106(2), 112-124.
Van Henten, E. J., Van Tuijl, B. A. J., Hoogakker, G. J., Van Der Weerd, M. J., Hemming, J., Kornet, J. G., & Bontsema, J. (2006). An autonomous robot for de-leafing cucumber plants grown in a high-wire cultivation system. Biosystems Engineering, 94(3), 317-323.
Van Henten, E. J., Hemming, J., Van Tuijl, B. A. J., Kornet, J. G., Meuleman, J., Bontsema, J., & Van Os, E. A. (2002). An autonomous robot for harvesting cucumbers in greenhouses. Autonomous robots, 13(3), 241-258.
Van Henten, E. J., Van Tuijl, B. V., Hemming, J., Kornet, J. G., Bontsema, J., & Van Os, E. A. (2003). Field test of an autonomous cucumber picking robot. Biosystems engineering, 86(3), 305-313.
Van Henten, E. J., Van’t Slot, D. A., Hol, C. W. J., & Van Willigenburg, L. G. (2009). Optimal manipulator design for a cucumber harvesting robot. Computers and electronics in agriculture, 65(2), 247-257.
Vangala, R. N. K., Banerjee, A., & Hiremath, B. N. (2017). An association between information and communication technology and agriculture knowledge management process in indian milk co-operatives and non-profit organizations: An empirical analysis. arXiv preprint arXiv:1702.03621.
Lili, W., Bo, Z., Jinwei, F., Xiaoan, H., Shu, W., Yashuo, L., ... & Chongfeng, W. (2017). Development of a tomato harvesting robot used in greenhouse. International Journal of Agricultural and Biological Engineering, 10(4), 140-149.
Weber, R. H. (2013). Internet of things–governance quo vadis?. Computer law & security review, 29(4), 341-347.
Weiss, U., & Biber, P. (2011). Plant detection and mapping for agricultural robots using a 3D LIDAR sensor. Robotics and autonomous systems, 59(5), 265-273.
Xiao, H., Qiu, T., & Zhou, P. (2013, August). Integration of heterogeneous agriculture information system based on interoperation of domain ontology. In 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 476-480). IEEE.
Yang, Q., Chang, C., Bao, G., Fan, J., & Xun, Y. (2018). Recognition and localization system of the robot for harvesting Hangzhou White Chrysanthemums. Int J Agric & Biol Eng, 2018; 11(1): 88-95.
Yin, X., & Noguchi, N. (2014). Development and evaluation of a general-purpose electric off-road robot based on agricultural navigation. Int J Agric & Biol Eng, 7(5): 14-21.
Zaidner, G., & Shapiro, A. (2016). A novel data fusion algorithm for low-cost localisation and navigation of autonomous vineyard sprayer robots. Biosystems Engineering, 146, 133-148.
Zheng, Y. L., He, Q. Y., Ping, Q. I. A. N., & Ze, L. I. (2012). Construction of the ontology-based agricultural knowledge management system. Journal of Integrative Agriculture, 11(5), 700-709.
Zubizarreta, I., Seravalli, A., & Arrizabalaga, S. (2016). Smart city concept: What it is and what it should be. Journal of Urban Planning and Development, 142(1), 04015005.